\qquad Pd: \qquad

AP Calculus AB

Test Review: Basic Integrals

Find the indefinite integral.

1. $\int\left(3+2 x-\frac{4}{x^{2}}\right) d x$
2. $\int(2 \sin x-\cos x) d x$
3. $\int 4 x\left(\sqrt{x}+\frac{1}{x^{2}}\right) d x$

Let $f(x)$ be an even function such that $\int_{0}^{4} f(x) d x=9 \pi$. Let $g(x)$ be an odd function such that $\int_{0}^{4} g(x) d x=12$. Evaluate the following.
4. $\int_{-4}^{4} f(x) d x$
5. $\int_{-4}^{4} g(x) d x$
6. $\int_{-4}^{4}[g(x)-f(x)] d x$
7. $\int_{0}^{4}[3 f(x)+1] d x$
8. $\int_{4}^{0}[f(x)+g(x)] d x$
9. $\int_{4}^{0}[f(x)-g(x)] d x$

Evaluate the definite integral
10. $\int_{0}^{\pi / 4}(3 \cos x-\sin x) d x$
11. $\int_{0}^{\pi / 6}(2-\sin x) d x$
12. $\int_{1}^{9} \frac{3 \sqrt{x}}{2 x} d x$

Use the table below to evaluate the definite integrals.

x	-2	-1	0	1	2
$f(x)$	-5	8	11	10	12
$f^{\prime}(x)$	4	-7	-9	1	0
$f^{\prime \prime}(x)$	-3	-1	0	2	6

13. $\int_{-2}^{0} f^{\prime}(x) d x$
14. $\int_{-2}^{1} f^{\prime \prime}(x) d x$
15. $\int_{0}^{2}\left[f^{\prime \prime}(x)-\frac{2}{3} f^{\prime}(x)\right] d x$
16. Snow is accumulating at a rate of $r(t)$ inches per hour. Give units for each of the following.
(a) $r^{\prime}(t)$
(b) $\int r(t) d t$
(c) $\int_{a}^{b} r(t) d t$
(d) $\frac{1}{b-a} \int_{a}^{b} r(t) d t$
17. A particle moves along the x-axis with velocity $v(t)=1+2 t-0.25 t^{3}$.
(a) Find the average velocity of the particle on the interval $[1,3]$.
(b) Find the average acceleration of the particle on the interval $[1,3]$.
(c) If the initial position of the particle is $x=-3$, find the position at time $t=4$.
(d) Find the total distance traveled from time $t=0$ to $t=5$.
(e) Find all times on the interval $[0,5]$ when the speed of the particle is increasing.

t (hours)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
$v(t)$ $(\mathrm{km} / \mathrm{hr})$	0	45	72	88	95	80	62	58	50

18. The table shows the velocity of a vehicle recorded at various times over a two-hour interval.
(a) Estimate the acceleration of the vehicle at $t=1$ hour.
(b) If possible, find the average acceleration of the vehicle on the time interval [0, 2]. If not, explain why the value cannot be determined.
(c) If possible, find the average velocity of the vehicle on the time interval [0, 2]. If not, explain why the value cannot be determined.
(d) If possible, find the total distance traveled by the car during the two-hour time interval. If not, explain why the value cannot be determined.
(e) Interpret the meaning of $\int_{0}^{2} v(t) d t$ in the context of the problem. Include units.
(f) Interpret the meaning of $\frac{1}{2} \int_{0}^{2} v(t) d t$ in the context of the problem. Include units.
(g) Approximiate $\int_{0}^{2} v(t) d t$ using a midpoint Riemann sum with four subintervals of equal length.
(h) Approximiate $\int_{0}^{2} v(t) d t$ using a right-hand Riemann sum with four subintervals of equal length.
19. Find the average value of the function $f(x)=x^{2}-\sin x$ on the interval $[0, \pi]$.
20. The graph of $f^{\prime}(x)$ shown below consists of two semicircles and a line segment.

(a) Find the exact value of $f(3)-f(0)$
(b) Find the exact value of $f(5)-f(-3)$
(c) If $f(6)=\frac{3 \pi}{4}$, find the exact value of $f(4)$
(d) If $\int_{0}^{10} f^{\prime}(t) d t=20$, find $\int_{7}^{10} f^{\prime}(t) d t$
