Name: _____ Date: _____ Pd: _____

AP Calculus **AB**

Test Review: Basic Integrals

Find the indefinite integral.

1.
$$\int \left(3 + 2x - \frac{4}{x^2}\right) dx$$
 2. $\int (2\sin x - \cos x) dx$ 3. $\int 4x \left(\sqrt{x} + \frac{1}{x^2}\right) dx$

Let f(x) be an **even** function such that $\int_0^4 f(x) dx = 9\pi$. Let g(x) be an **odd** function such that $\int_{0}^{4} g(x) \, dx = 12.$ Evaluate the following.

4.
$$\int_{-4}^{4} f(x) dx$$

5. $\int_{-4}^{4} g(x) dx$
6. $\int_{-4}^{4} [g(x) - f(x)] dx$
7. $\int_{0}^{4} [3f(x) + 1] dx$
8. $\int_{4}^{0} [f(x) + g(x)] dx$
9. $\int_{4}^{0} [f(x) - g(x)] dx$

Evaluate the definite integral

10.
$$\int_0^{\pi/4} (3\cos x - \sin x) \, dx$$
 11. $\int_0^{\pi/6} (2 - \sin x) \, dx$ 12. $\int_1^9 \frac{3\sqrt{x}}{2x} \, dx$

Use the table below to evaluate the definite integrals.

x	-2	-1	0	1	2
f(x)	-5	8	11	10	12
f'(x)	4	-7	-9	1	0
f''(x)	-3	-1	0	2	6

13.
$$\int_{-2}^{0} f'(x) dx$$
 14. $\int_{-2}^{1} f''(x) dx$ 15. $\int_{0}^{2} \left[f''(x) - \frac{2}{3} f'(x) \right] dx$

16. Snow is accumulating at a rate of r(t) inches per hour. Give units for each of the following.

(a)
$$r'(t)$$
 (b) $\int r(t) dt$ (c) $\int_{a}^{b} r(t) dt$ (d) $\frac{1}{b-a} \int_{a}^{b} r(t) dt$

17. A particle moves along the x-axis with velocity $v(t) = 1 + 2t - 0.25t^3$.

- (a) Find the average velocity of the particle on the interval [1,3].
- (b) Find the average acceleration of the particle on the interval [1,3].
- (c) If the initial position of the particle is x = -3, find the position at time t = 4.
- (d) Find the total distance traveled from time t = 0 to t = 5.
- (e) Find all times on the interval [0, 5] when the speed of the particle is increasing.

t (hours)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
v(t) (km/hr)	0	45	72	88	95	80	62	58	50

- 18. The table shows the velocity of a vehicle recorded at various times over a two-hour interval.
 - (a) Estimate the acceleration of the vehicle at t = 1 hour.
 - (b) If possible, find the average acceleration of the vehicle on the time interval [0, 2]. If not, explain why the value cannot be determined.
 - (c) If possible, find the average velocity of the vehicle on the time interval [0, 2]. If not, explain why the value cannot be determined.
 - (d) If possible, find the total distance traveled by the car during the two-hour time interval. If not, explain why the value cannot be determined.
 - (e) Interpret the meaning of $\int_0^2 v(t) dt$ in the context of the problem. Include units.
 - (f) Interpret the meaning of $\frac{1}{2} \int_0^2 v(t) dt$ in the context of the problem. Include units.
 - (g) Approximiate $\int_0^2 v(t) dt$ using a midpoint Riemann sum with four subintervals of equal length.
 - (h) Approximiate $\int_0^2 v(t) dt$ using a right-hand Riemann sum with four subintervals of equal length.
- 19. Find the average value of the function $f(x) = x^2 \sin x$ on the interval $[0, \pi]$.
- 20. The graph of f'(x) shown below consists of two semicircles and a line segment.

- (a) Find the exact value of f(3) f(0)
- (b) Find the exact value of f(5) f(-3)
- (c) If $f(6) = \frac{3\pi}{4}$, find the exact value of f(4)(d) If $\int_{0}^{10} f'(t) dt = 20$, find $\int_{7}^{10} f'(t) dt$